Aluminum nanoparticles synthesis in spark discharge for ultraviolet plasmonics
نویسندگان
چکیده
منابع مشابه
Rhodium nanoparticles for ultraviolet plasmonics.
The nonoxidizing catalytic noble metal rhodium is introduced for ultraviolet plasmonics. Planar tripods of 8 nm Rh nanoparticles, synthesized by a modified polyol reduction method, have a calculated local surface plasmon resonance near 330 nm. By attaching p-aminothiophenol, local field-enhanced Raman spectra and accelerated photodamage were observed under near-resonant ultraviolet illumination...
متن کاملPlasmonics in the Ultraviolet with Aluminum, Gallium, Magnesium and Rhodium
Ultraviolet plasmonics (UV) has become an active topic of research due to the new challenges arising in fields such as biosensing, chemistry or spectroscopy. Recent studies have pointed out aluminum, gallium, magnesium and rhodium as promising candidates for plasmonics in the UV range. Aluminum and magnesium present a high oxidation tendency that has a critical effect in their plasmonic perform...
متن کاملAluminum for plasmonics.
Unlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures w...
متن کاملSpark discharge synthesis of semiconductor nanoparticles for thick-film metal oxide gas sensors
Traditional methods of synthesis of metal-oxide gas sensing materials for semiconductor sensors are based on wet sol-gel processes. However, these processes lead to the formation of hydroxyl groups on the surface of oxide particles being responsible for the strong response of a sensing material to humidity. In this work, we investigated the possibility to synthesize metal-oxide materials with r...
متن کاملAerosol Generation by Spark Discharge*
An aerosol generator producing particles of any desired mobility, equivalent radius, and conducting material has been developed. Particles are formed by electrode atomization in a spark discharge. A high yield of charged particles enables generation of high concentration (> 10’ cmm3) monodisperse aerosols using electrostatic classification. In order to obtain nonagglomerated particles, the aero...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2020
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1695/1/012021